Transversality theory, cobordisms, and invariants of symplectic quotients

نویسنده

  • Shaun Martin
چکیده

This paper gives methods for understanding invariants of symplectic quotients. The symplectic quotients that we consider are compact symplectic manifolds (or more generally orbifolds), which arise as the symplectic quotients of a symplectic manifold by a compact torus. A companion paper [23] examines symplectic quotients by a nonabelian group, showing how to reduce to the maximal torus. Throughout this paper we assume X is a symplectic manifold, and that a compact torus T ∼= S × . . . × S acts on X , preserving the symplectic form, and having moment map μ : X → t, where t denotes the dual of the Lie algebra of T . We assume that μ is a proper map. (For definitions and our sign conventions see the notation section at the end of this introduction). For every regular value p ∈ t of the moment map, the inverse image μ(p) is a compact submanifold of X which is stable under T , and on which the T -action is locally free (that is, every point in μ(p) has finite stabilizer subgroup). The symplectic quotient, which we denote X//T (p), is defined by taking the topological quotient by T

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Transversality and Orbifolds of Punctured Holomorphic Curves in Dimension Four

We derive a numerical criterion for J–holomorphic curves in 4–dimensional symplectic cobordisms to achieve transversality without any genericity assumption. This generalizes results in [HLS97] and [IS99] to allow punctured curves with boundary that generally need not be somewhere injective or immersed. As an application, we combine this with the intersection theory of punctured holomorphic curv...

متن کامل

Gromov–Witten invariants of symplectic quotients and adiabatic limits

We study pseudoholomorphic curves in symplectic quotients as adiabatic limits of solutions to the symplectic vortex equations. Our main theorem asserts that the genus zero invariants of Hamiltonian group actions defined by these equations are related to the genus zero Gromov–Witten invariants of the symplectic quotient (in the monotone case) via a natural ring homomorphism from the equivariant ...

متن کامل

Heegaard diagrams and holomorphic disks

Gromov’s theory of pseudo-holomorphic disks [39] has wide-reaching consequences in symplectic geometry and low-dimensional topology. Our aim here is to describe certain invariants for low-dimensional manifolds built on this theory. The invariants we describe here associate a graded Abelian group to each closed, oriented three-manifold Y , the Heegaard Floer homology of Y . These invariants also...

متن کامل

Area Dependence in Gauged Gromov-witten Theory

We study the variation of the moduli space of symplectic vortices on a fixed holomorphic curve with respect to the area form. For compact, convex varieties we define symplectic vortex invariants and prove a wall-crossing formula for them. As an application, we prove a vortex version of the abelianization conjecture of Bertram, Ciocan-Fontanine, and Kim [4], which related GromovWitten invariants...

متن کامل

Gromov-Witten invariants for general symplectic manifolds

1 Localized Euler classes on topological orbifolds 5 1.1 Banach orbifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Localized Euler classes in finite dimensions . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Abstract transversality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Localized Euler classes on Banach orbifolds . . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999